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Paraunitary Perfect Reconstruction Filter Banks.

Introduction:

Analysis and synthesis filter banks of M channel maximally decimated filter bank can be expressed
in terms of polyphase matrices E(z) and R(z). Such a filter bank with FIR filters has ‘perfect reconstruction’

property iff E(2) is just a delay. i.e.
det E(z)=a zK.

We shall discuss Perfect Reconstruction filter banks in which the polyphase matrix E(z) satisfies

a special property called the lossless or Paraunitary property

* Synthesis filter and analysis filters have the same length

* This property is basic to the generation of the “Orthonormal Wavelet basis “




Paraunitary Property

In our earlier discussions, the analysis bank is described by an M X 1 transfer matrix h(z) and
the synthesis filter by 1 X M transfer matrix f7(z) which are expressed in terms of polyphase

matrices E(z) and R(z) as:

h(z) = E(zM) . e(2) f(z) = zz(M-) e~(z) R(zM) ... (1)

Lossless transfer Matrix:

A p X r causal matrix H(z) is said to be lossless if
* each entry Hy,(z) is stable

» H(e) is unitary, that is,

H‘(eiW). H(e) = dl; ( H’(e/’W) is transpose-conjugate of H(e/). .. (2)

“H(z) is lossless” is equivalent to ““ the LTI system with transfer function H(z) is lossless.”




Paraunitaryv Property

Equation (2) is called Unitary property. Thus H(z) is unitary on the unit circle in the Z plane.

In order to satisfy (2), p > . The subscript ‘r’ in I;means that it is a r x r matrix.

Paraunitary Property:

For rational transfer functions, (2) implies that:

H(z)H(z) = dI, forallz 3

This is termed as paraunitary property.

(Note:  H(z) is the complex conjugate of H(z)
ie. Hz)=HJz)
Ex.:- LetH(z) = (a+ bz), then
ﬁ(z) = a*+b*z )

So, for a causal system to be lossless, it is sufficient to prove
* stability * paraunitariness.




Paraunitary property

Observations:
1. If H(z) is square and lossless, then ﬁ(z) is paraunitary but not lossless ( unless it is a constant).

2. “Lossless” and “Paraunitariness” are used interchangeably.

Normalized systems: If a lossless system has d = 1, then we say it as normalized-lossless.
Square matrices:

For square matrices, equation (2) implies that

H'(z)=H(z)/d

i.e. the inverse of the matrix can be obtained by use of ‘tilde’ operation.

In this case, every row is power complementary, and any pair of rows is orthogonal since

Hz)H(z) =H@).Hz) = dl




Properties of Paraunitary Systems.

( Note: Power complimentary transfer functions:

Hy(z), H;(z) are said to be power complimentary if
2\ ?P\F — 2 9
H e[ +H (e )f =c* forall?

Some properties of Paraunitary Systems:

1. Determinant is allpass. For a square matrix, | H(z)| is all pass, in particular, if H(z) is FIR then,
| H(2) | is a delay 1.e.
det H(z) = a z’X, K>0, aoc0
2. Power Complimentary Property. For a M x 1 transfer matrix h(z) = [ Hy(2) ...... Hy.1(2) ], then

> [
k=0 ()

3.Submatrices of paraunitary H(z). Every column of a paraunitary transfer matrix is itself paraunitary.

- c for all?




Examples:

Therefore, K(z) is paraunitary.

2. The system in the adjacent figure has a transfer matrix

o 1

z) = [1 Z]
1]

Therefore, "qz).e(z) = [1 Z]|: _1J=2

So, e(z) is paraunitary !




Examples

3. Paraunitary Filter banks:

Consider the system in the figure, which is a cascade of two systems
with transfer matrices e(z) and W* respectively

W is M x M DFT matrix which is unitary, we have already seen
that e(z) is also paraunitary in previous example, i.e.

dz).e(z) =M

Thus, Overall transfer matrix is also paraunitary

[Hyz) |
H1 (2)

=W*e(2)

Hy, (@) ]

7-1

W*




Filter Bank Properties

From the previous discussion, the paraunitary property implies

E(z)E(z) = d1 ,thatis, E{z)=E(z)/d forall z
So we choose R(z) as R(z) =cz7* ET(Z)

Note: Positive K ensures that R(z) is causal.

Stability:

If the analysis filters are stable and IIR, then choice of R(z) as per equation (3) results in

unstable filters !

So, we cannot build useful Perfect Reconstruction Systems with IIR lossless E(z) !!

Hence we restrict our attention to FIR filters.

. (5)




Properties

Properties:
1. Relation between Analysis and Synthesis Filters:

Substituting equation (5) in equation (1) for synthesis filters, we obtain
fi(z) = zMDe~(z)R(zM)

= ¢ zM1TMEK) e~(z) E~ (zM)
= ¢ zM1TMEK) h~(2). Let L = M-1+ MK

Fi(z) = czL ﬁk(Z) e (6)

In time domain, it can be expressed as:
fen) = ch®(@L-n) 0<k< M-1
In frequency domain, it implies that

Fr(@)| = lc||Hie")]

i.e. the magnitude responses of F(z) and Hy (z) are exactly the same (with a scalefactor ¢)




Properties

Theorem:

Consider a maximally decimated QMF bank with causal FIR analysis filters H (z), and let E(z) be
the polyphase matrix for the analysis filters. Then,

1. E(z) is lossless ( that is, paraunitary )
2. The synthesis filters are given by fr(n) =c h*,(L-n), 0<k<M-1

3. The system has perfect reconstruction property.

2. Power Complimentary property:
Consider the vector of analysis filters h(z) = E(z™) e(z). h(z) is paraunitary which implies that

analysis filters Hy (z) are power complimentary i.e.

M-1

. 2 L.
Z|H (e )| = positive constant
k=0




Properties

3. AC matrix is paraunitary if and only if E(z) is Paraunitary.

4. Relation to Mth band filters

If E(2) is Paraunitary, the each analysis filter Hy (2), is a spectral factor of a
(Zero phase) Mth band filter. The filter G (z), defined as:

Gk(z ) = ;]]gz).H (kz)

1s an Mth band filter.




Two Channel FIR paraunitary QMF Banks

Consider a two channel QMF filter bank with causal FIR filters given by

H,(z) =Y h(n)z" H (z2)=) h(n)z™"

The alias-component matrix (AC) is given by:

[H,(z) Hi(z) |

HO= s mes)

Paraunitariness of H(z) implies that H, (2).Hi(2) = J1, where / = 2d.

From this, we obtain:

Ho(2).Ho(2) + Ho (=2).Hy(-z) = / e (T2)
H,(2).H\(2) + H\(-z).H,(-z) = / (D)

Ho(2).H,(2) + Hy (-2).H, (-2) = 0 e (T0)




Two Channel FIR paraunitary QMF Banks

The above equations imply that

| Ho(2).Ho(2) |1,=0.5/) |H\(2).H\(2)|,=0.5) |Ho(z).Hi(2)|,,=0 e 8)

From this, we can say that:
. Ho(2).Ho(z) s a half-band filter, i.e. Hy(z) is power symmetric.

*  Order of Hy(z) is necessarily odd, N =2J+ 1

Relation between the Two Analysis Filters:

From equation ( 7 b ) we have that

H(z) _~Hy(2)
H( z) H,(-2)




Two Channel FIR paraunitary QMF Banks

From equation ( 7 a ) we have that Ho(2).Ho(2)+ Ho(-z).Ho(-z) =/
which implies that there are no common factors between Hy(z) and H,(z) ( since right hand side is a constant)

Hence we conclude that

H,(z) = CZ_Lﬁo(-Z) e (9)

This is equivalent to in frequency domain as:

| Hl(ej§)| — |H0(_ej§ )|: F gej(f—l/)) |

i.e. the magnitude response of H;(z) 1s obtained by shifting that of Hy(z)by =.

For a real coefficient case, this means that if Hy(z) is low-pass then H(z) 1s high-pass

both filters have the same ripple sizes, and same transition band-widths.




Two Channel FIR paraunitary QMF Banks

Design of Perfect Reconstruction QMF bank:

»  First design a zero-phase half-band filter H(z) with H(e/w) = 0.

»  Compute the spectral factor Hy(z) ( see section 3.2.5 or appendix D of text)
which gives one of the analysis filters with order N = 2J + 1.

*  Obtain the other analysis filter H,(z) and the two synthesis filters Fi(z), Fi(z) as:

H,(2)=—z""H(-2), Fo(z)=z VHo(2), and Fi(z) = z " H,(2) L (10)

Equivalently, the above expression can be written as: . (11)

() =CIPh*(N-n) £ =h*N-1n). and  fi(n) =h*N -n)




Two Channel FIR paraunitary QMF Lattice

FIR Two channel QMF bank with real coefficients:

Consider the following cascaded structure.

x(n)
> > > > > » 2 —»
o
z! RO R1 e o o RJ
>—» » 72 —p > — 22 » 2 —»
< >
Analysis bank
R, 1s called Givens rotation, transfer matrix defined and implemented as:
c
> > >
[ cosO, sin0, | , -
R ()= " " J 0_ 1sreal
-sin0_ cosO_ <
> > >
* Ry 1s unitary C

¢ denotes cos(Om) and s denotes sin(Om)




Two Channel FIR paraunitary QMF Lattice

Any 2x2 real coefficient (causal, FIR) paraunitary matrix can be factored as:

101

E(z) = aRJ.A(z)RJ_l....A(Z)RO[O ilJ

1 0]
0

where A(z)= ||_ : J, a is a positive scalar
z

Synthesis bank which would result in perfect reconstruction is given by applying equation (5):

Ri —aIORF R, I'(z)R
(z) = OilJ o -L(2)....... 11 I'(z2)R;

where, I'(2) :|[gl O}




Two Channel FIR paraunitary OMF Lattice

Lattice structure for synthesis filter bank:

|

71

X’ (n)

T2 q » z2 —p - 72 [» ¥

!

T2 > > > —{> >—»>
o

Synthesis bank

Analysis and Synthesis filters have order N = 2J + 1.




Two Channel FIR paraunitary QMF Lattice

In a more efficient lattice structure, the rotation matrix R,,can be written as:

1 a, ,
R =cos? if cos? #0

a2 |

0o 1 .
R = i[ | O] otherwise.

Lattice structure can now be redrawn as shown in the following figure with S =« H cos?,,
m




Two Channel FIR paraunitary QMF Lattice

| ™

Staga 1 Stage

Analysis Bank

Synthesis Bank




—»—p{ HmN(2) >—> > >

\V4
v

> Ho(m-l)(z) P Z2 >

Schematic for the m-th stage

The mth stage filters can be obtained from m-1 th stage filters as:

H"(z)=H{""(z)+a 2z H"(2),
H™(z)=-a H"(2)+z2H"(2)

The coefficients am are calculated by inverting the above equations to obtain:
(I+a HH"(2)=H™(z)—a H"(2),
(1+a Z)Z‘ZHl(’"‘l) (z)=a Hé’”)(z) o+ Hl(’") (2)

L (12)

L (13)




Derivation of 13 from 12:

H™(2)=H D (z)+a 2z H"V(2),
H™(z)=-a H"(2)+z2H"(2)

From 12

which can be written as:
H )l |1 a,2[H @]
H" (z)J_ -a, 27 Hf'"‘“(z>J
_Hé’”‘l)(z) 1 az? ! H(()’”)(Z)_|
— = .
H"(2)| |-a, 2z Hf"’)(Z)J
HP@) z2-a,z” TH (2)
H™@)| a,’z2+z7%|a, 1 H™ (2)

m

o AHME T z2ea 22 [HE Y (2)
= (1+a,’)z?] =| "
LHf’")(Z)J la, 1 H"?(z)

From which it follows that:
(I+a )H" ()= H™ () -a H™(z),

(1+ amz)z‘zHl(’"‘l)(Z) =a mHé’”)(z) +Hl(’") (2)




Two Channel FIR paraunitary QMF Lattice

Properties of Paraunitary QMF Lattice:
The properties of the QMF lattice are almost similar to that dis cussed in previous section(s).
Completeness:

» Every two channel ( real coefficient, FIR) paraunitary QMF bank can be represented using
the above lattice structure.

« We can alwaysdefine H, (z) =-z “Hy(-z') and implement the analysis bank using the above
lattice, given a real coefficient power symmetric FIR filter Hy(z)




Complexity of Paraunitary QMF lattice:

The total number of multipliers required to implement the lattic e sections in the analysis is equal to
20+ 1)+ 2.

Each of these operates at half the input sampling rate, so that we have an average of J +2 MPU’s.
Therefore, MPU’s to implement the lattice sections in analysis bank =J+ 2 =0.5(N + 3).

Each lattice section requires two additions, so J + 1 sections require 2( J + 1) additions and each operate
at half the input sampling rate.

Therefore, total number of APU’s = (J+1) =05(N+1).

Synthesis bank has the same complexity.

Thus, lattice structure is more efficient, requiring only half as many MPU’s as the direct form !




