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Paraunitary Perfect Reconstruction Filter Banks.

Introduction:

Analysis and synthesis filter banks of M channel maximally decimated filter bank can be expressed
in terms of polyphase matrices E(z) and R(z). Such a filter bank with FIR filters has ‘perfect reconstruction’  

property iff E(z) is just a delay. i.e.

det E(z) = a z-K .

We shall discuss Perfect Reconstruction filter banks in which the polyphase matrix E(z) satisfies  

a special property called the lossless or Paraunitary property

• Synthesis filter and analysis filters have the same length

• This property is basic to the generation of the “Orthonormal Wavelet basis “



Paraunitary Property

In our earlier discussions, the analysis bank is described by an M x 1 transfer matrix h(z) and  
the synthesis filter by 1 x M transfer matrix fT(z) which are expressed in terms of polyphase  
matrices E(z) and R(z) as:

h(z) =  E(zM) . e(z) fT(z) = z-(M-1) e~(z) R(zM) …. ( 1 )

Lossless transfer Matrix:

A p x r causal matrix H(z) is said to be lossless if

• each entry Hkm(z) is stable

• H(ejw) is unitary, that is,

Hu(ejw). H(ejw) = dIr ( Hu(ejw) is transpose-conjugate of H(ejw). …. ( 2 )

“H(z) is lossless” is equivalent to “ the LTI system with transfer function H(z) is lossless.”



Paraunitary Property

Equation (2) is called Unitary property. Thus H(z) is unitary on the unit circle in the Z plane.  

In order to satisfy (2), p > r. The subscript ‘r’ in Ir means that it is a r x r matrix.

Paraunitary Property:

For rational transfer functions, (2) implies that:

This is termed as paraunitary property.

(Note:

for allz
~
H(z).H(z) = dI,

~

H(z) is the complex conjugate of H(z)
~

~

-1
*

H(z) =

Ex. : - Let H(z) = (a + bz-1), then

i.e. H(z) = H (z )

a* + b* z )

So, for a causal system to be lossless, it is sufficient to prove
* stability * paraunitariness.

….. (3)



Paraunitary property

Observations:

is paraunitary but not lossless ( unless it is a constant).

2. “Lossless” and “Paraunitariness” are used interchangeably.

Normalized systems: If a lossless system has d = 1, then we say it as normalized-lossless.

Square matrices:

For square matrices, equation (2) implies that

H(z)1. If H(z) is square and lossless, then ~

~-1H (z) = H(z) /d

i.e. the inverse of the matrix can be obtained by use of ‘tilde’ operation.

In this case, every row is power complementary, and any pair of rows is orthogonal since
~ ~
H(z).H(z) =H(z).H(z) = dI



Properties of Paraunitary Systems.

( Note: Power complimentary transfer functions:
H0 (z), H1(z) are said to be power complimentary if

H (e j?  ) 2 
+ H (e j?  ) 2 

= c2 for all?
0 1 )

Some properties of Paraunitary Systems:

1.Determinant is allpass. For a square matrix, | H(z)| is all pass, in particular, if H(z) is FIR then,
| H(z) | is a delay i.e.

det H(z) = a z-K, K > 0, a s 0

2. Power Complimentary Property. For a M x 1 transfer matrix h(z) = [ H0(z) …… HM-1(z) ], then

3.Submatrices of paraunitary H(z). Every column of a paraunitary transfer matrix is itself paraunitary.

H (e
M-1 2j?

k ) = c for all?å
k=0 ….. ( 4 )



1. K(z) = then we have1 0
0 z-1

-1
= Iú

û

0 ù

û ë

0ù é1
ê0ë

L~(z).L(z) = é1
z ú ê0 z

Therefore, K(z) is paraunitary.

2. The system in the adjacent figure has a transfer matrix

-1ê ú
ë û

é 1 ù
z

e(z) = z-1

-1ê ú
ë ûz

~e(z) = [1 z]

Therefore, ~e(z).e(z)  = [1 z] é 1 ù
= 2

So, e(z) is paraunitary !

Examples:



Examples

3. Paraunitary Filter banks:

Consider the system in the figure, which is a cascade of two systems  
with transfer matrices e(z) and W* respectively

W*

z-1

z-1

z-1

W is M x M DFT matrix which is unitary, we have already seen  
that e(z) is also paraunitary in previous example, i.e.

~e(z).e(z) = M

Thus, Overall transfer matrix is also paraunitary

0

(z)ú

ú
ú
ú
ú

1

.

. ú =W*e(z)

.

ù
ú
ú
ú

êH
ê

ê
ê
ê
ê
ê
ê

êH (z)

ë M-1 û

éH (z)



Filter Bank Properties

From the previous discussion, the paraunitary property implies

So we choose R(z) as

Note: Positive K ensures that R(z) is causal.

~ ~-1E(z)E(z) = d I , that is, E (z) = E(z) / d for all z
~R(z) = cz -K E(z)

Stability:

If the analysis filters are stable and IIR, then choice of R(z) as per equation (3) results in  
unstable filters !

So, we cannot build useful Perfect Reconstruction Systems with IIR lossless E(z) !!  

Hence we restrict our attention to FIR filters.

….. ( 5 )



Properties

Properties:

1. Relation between Analysis and Synthesis Filters:

Substituting equation (5) in equation (1) for synthesis filters, we obtain

fT(z) = z-(M-1) e~(z)R(zM)

= c z-(M-1+MK) e~(z) E~ (zM)

= c z-(M-1+MK) h~(z).

kF (z) = c z-L

0 < k < M-1

….. ( 6 )

In time domain, it can be expressed as:

fk(n) = c h*k(L - n) ,

In frequency domain, it implies that

|Fk(z)| = | c | | Hk(ejw)|

i.e. the magnitude responses of Fk (z) and Hk (z) are exactly the same (with a scalefactor c)

~
Hk (z)

Let L = M-1+ MK



Properties

Theorem:

Consider a maximally decimated QMF bank with causal FIR analysis filters Hk (z), and let E(z) be  
the polyphase matrix for the analysis filters. Then,

1. E(z) is lossless ( that is, paraunitary )
2. The synthesis filters are given by fk (n) = c h*k (L - n), 0 £ k £ M-1
3. The system has perfect reconstruction property.

2. Power Complimentary property:

Consider the vector of analysis filters h(z) = E(zM) e(z). h(z) is paraunitary which implies that

analysis filters Hk (z) are power complimentary i.e.
M-1 2

= positive constantå
k=0

j?
kH  (e )



Properties

3. AC matrix is paraunitary if and only if E(z) is Paraunitary.

4. Relation to Mth band filters

If E(z) is Paraunitary, the each analysis filter Hk (z), is a spectral factor of a  

(Zero phase) Mth band filter. The filter Gk (z), defined as:

G (z ) @ ~ (z).H ( z)
k H k k

is an Mth band filter.



Two Channel FIR paraunitary QMF Banks

Consider a two channel QMF filter bank with causal FIR filters given by

-n-nå å
n=0

1 1

N N

n=0
00 H  (z) = h (n)zH (z) = h (n)z

The alias-component matrix (AC) is given by:

ë û0 1H (-z)úêH (- z)
H1(z) ù

H (z) = é
H0 (z)

Paraunitariness of H(z) implies that

From this, we obtain:

~ ~

~~

~~
H0 (z).H0 (z) +H0 (-z).H0 (-z) = þ

H1(z).H1(z) +H1 (-z).H1 (-z) = þ

H0 (z).H1(z) +H0 (-z).H1 (-z) = 0

~
Hk (z).Hk (z) = þI, where þ = 2d.

….. ( 7 a )

….. ( 7 b )

….. ( 7 c )



Two Channel FIR paraunitary QMF Banks

The above equations imply that

~~~
| H 0 (z ).H1( z) |¯2= 0| H1 (z ).H1( z) |¯2= 0.5þ| H 0(z).H 0 (z) |¯2= 0.5þ …..( 8 )

From this, we can say that:

• is a half-band filter, i.e. H0(z) is power symmetric.

• Order of H0(z) is necessarily odd, N = 2J + 1

~
H 0(z).H 0(z)

Relation between the Two Analysis Filters:

From equation ( 7 b ) we have that

~
0 H1(-z)

H0 (-z)
H ( z)
H ( z) - ~

1 =



From equation ( 7 a ) we have that

which implies that there are no common factors between H0(z) and H1(z) ( since right hand side is a constant)

Hence we conclude that

~ ~
H 0 (z).H 0 (z) + H 0 (-z).H 0 (-z ) = þ

Two Channel FIR paraunitary QMF Banks

1
-L ~H (z) = cz H0 (-z) ….. ( 9 )

This is equivalent to in frequency domain as:

| H (e jx ) | = H (-e jx ) = H (e j (x -n ))
1 0 0

i.e. the magnitude response of H1(z) is obtained by shifting that of H0(z)by p.

For a real coefficient case, this means that if H0(z) is low-pass then H1(z) is high-pass  

both filters have the same ripple sizes, and same transition band-widths.



Two Channel FIR paraunitary QMF Banks

Design of Perfect Reconstruction QMF bank:

• First design a zero-phase half-band filter H(z) with H(ejw) > 0.

• Compute the spectral factor H0(z) ( see section 3.2.5 or appendix D of text)  
which gives one of the analysis filters with order N = 2J + 1.

• Obtain the other analysis filter H1(z) and the two synthesis filters F0(z), F1(z) as:

.. ( 10 )

Equivalently, the above expression can be written as:

and f1(n) = h1 *(N - n)h (n) = (-1)n h * (N -n) f (n) = h *(N - n),
1 0 0 0

.. ( 11 )

~ ~
1

-N-N ~-NH  ( z)= -z H 0 (-z),  F0 (z)= z H 0 (z),  and F1 (z) = z H1(z)



Two Channel FIR paraunitary QMF Lattice

FIR Two channel QMF bank with real coefficients:  

Consider the following cascaded structure.

R0
z-2

R1z-1
a

x(n)

. . .
z-2

RJ
¯2

¯2

R mm 0 is realê-sin0 cos0 ú
ë m mû

(z) = écos0m sin0m ù

Analysis bank

Rm is called Givens rotation, transfer matrix defined and implemented as:
c

-s

s

c denotes cos(qm)
c

and s denotes sin(qm)
* Rm is unitary



Two Channel FIR paraunitary QMF Lattice

Any 2x2 real coefficient (causal, FIR) paraunitary matrix can be factored as:

, a is a positivescalar
-1ú

ë û

é1 0 ù

0 ù
J J-1 0ê

ë û0 ±1ú

z
where L(z) = ê0

E(z) = aR .L(z)R ....L(z)R é1

Synthesis bank which would result in perfect reconstruction is given by applying equation (5):

ûë

ûë

1ú
0ù

±1úê0
a é1 0 ù R

JJ-10

éz-1

where, G(z) =ê0

.G(z)RT.G(z).......RTR( z) =



Two Channel FIR paraunitary QMF Lattice

Lattice structure for synthesis filter bank:

JR T

z-2

. . .
z-2

0R T z-1

a

x’(n)
­ 2

­2

1R T

Synthesis bank

Analysis and Synthesis filters have order N = 2J + 1.



Two Channel FIR paraunitary QMF Lattice

In a more efficient lattice structure, the rotation matrix Rmcan be written as:

otherwise.

-a

0 úû
ê-1ë

if cos ? ¹ 0
ë m û

1 ù

é 1 a mù

m

mm ê 1 úm

R = ± é 0

R = cos?

Lattice structure can now be redrawn as shown in the following figure with S =aÕmcos?m



Two Channel FIR paraunitary QMF Lattice

Synthesis Bank

Analysis Bank
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0 0

m 0

m 1
z-2 H (m-1) (z),

H (m-1) (z) + z-2 H (m-1) (z)H (m ) (z) = -a

H (m ) (z) = H (m-1) (z) + a
.. ( 12 )

0H (m-1)(z)

0H (m-1)(z) z-2

-am

am

Schematic for the m-th stage

The mth stage filters can be obtained from m-1 th stage filters as:

(1+ a 2 )z-2 H (m-1) (z) = a H (m ) (z) +H (m) (z)
m 1 m 0 1

The coefficients am are calculated by inverting the above equations to obtain:

(1+ a 2 )H (m-1) (z) = H (m ) (z) - a H (m ) (z),
m 0 0 m 1

.. ( 13 )



Derivation of 13 from 12:

11

0 0

m 0

m 1
z-2 H (m-1) (z),

H (m-1) (z) + z-2 H (m-1) (z)H (m ) (z) = -a

H (m ) (z) = H (m-1) (z) + aFrom 12

which can be written as:

ú
ú
ûê

úê
ûë

ú = ê

ú
ú
û

ù

ê
úêêú =êÞ

ú
ú
ú

ú
ú = ê

ê
êÞ

úûúê
úê ú
ûëú

ú = ê
û ëê

ê

1ëa
Þ (1+a

1aa
1

. ê

1

0
-2

ë 1 û

0

ûë 1

0
-2

ë 1 û

0

0

ë 1

0

1ë 1

0

H

(z)ù

(z)

ùéHé z-2 -a z2 ) z-2 ê

H

û ë 1 û
ùéH (z)

(z)

é z-2 - a z
2z-2 + z-2

z-2

-1

z-2 ù

H (z) ê-a

(z)Hz-2H (z) ê-a

(m-1)

(m-1)

m

m

êH (m) (z)ú

éH (m) (z)ù
m

(m-1)

(m-1)

ë m

m

mêH (m ) (z)ú

éH (m ) (z)ù

êH (m) (z)ú

éH (m) (z)ù

û ë m

m

(m-1)

éH (m-1) (z)ù é 1 a

(m-1)

a z-2 ùéH (m-1) (z)ù

m

m 0

(m)

éH ( m) (z)ù é 1

From which it follows that:
(1+ a 2 )H (m-1) (z) = H (m ) (z) - a H (m ) (z),

m 0 0 m 1

(1+ a 2 )z-2 H (m-1) (z) = a H (m ) (z) +H (m) (z)
m 1 m 0 1



Properties of Paraunitary QMF Lattice:

The properties of the QMF lattice are almost similar to that dis cussed in previous section(s).

Completeness:

• Every two channel ( real coefficient, FIR) paraunitary QMF bank can be represented using  
the above lattice structure.

• We can always define and implement the analysis bank using the above
lattice, given a real coefficient power symmetric FIR filter H0(z)

Two Channel FIR paraunitary QMF Lattice

1 0H (z) = - z -N H (-z -1)



Complexity of Paraunitary QMF lattice:

The total number of multipliers required to implement the lattic e sections in the analysis is equal to  
2(J + 1) + 2.

Each of these operates at half the input sampling rate, so that we have an average of J + 2 MPU’s.  

Therefore, MPU’s to implement the lattice sections in analysis bank = J + 2 = 0.5( N + 3 ).

Each lattice section requires two additions, so J + 1 sections require 2( J + 1) additions and each operate  
at half the input sampling rate.

Therefore, total number of APU’s =  ( J + 1 ) = 0.5( N + 1 ).  

Synthesis bank has the same complexity.

Thus, lattice structure is more efficient, requiring only half as many MPU’s as the direct form !


